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CONTACT PROBLEflS OF THE THEORY OF PLASTICITY FOR COMPLEX LOADING* 

V.I. KUZ'MENKO 

The problem of the interaction between a stamp and an elastic-plastic 
body for a non-proportional change in the given loads and taking the 
contact area indeterminacy into account, is considered. It is assumed 
that the material properties are described by differential-linear or 
differential-non-linear relationships between the stress rates and the 
strain rates encompassing a fairly broed group of the theory of plasticity. 
It is shown that the initial problem in a generalized formulation is 
equivalent to a certain quasivariational inequality in the displacement 
velocities. By using a formulation in the form of a quasivariational 
inequality, existence conditions are studied for the solution, and a 
numerical method of investigation is proposed and verified. 

Note that the method of integral equations , utilized extensively in 
the theory of elasticity, can be applied successfully only to certain 
special classes of contact problems of the theory of plasticity /l, 2/. 
Research on general questions of the theory of contact problems for 
elastic-plastic bodies refers to individual plasticity models /3-6/, and 
the numerical methods that have received extensive development are applied 
to contact problems under complex loading by using heuristic algorithms 
/7-g/that require additional investigation and verification. 

1. General formulation of the problem. We consider the quasistatic deformation 
of an elasto-plastic body occupying a domain Q of a three-dimensional Cartesian space bounded 
by a piecewise-smooth surface r . The displacements and deformations are assumed to be small. 
We let t denote a monotonically increasing parameter associated with the loading process, 
which we shall call time. The solution of the problem is considered in at time interval [O,T). 
We let ud (2, t), efj (2, t), and ol,(z,t) denote the components of the displacement vector, and 
of the strain and stress tensors at the point z = (zI,tr,za)~P at the time tE [O,T). We 
assume the body is in the unstressed and unstrained state at the initial time t = 0. We 
denote differentiation with respect to time by a point, and with respect to the space variables 
by a comma. The rule of summation over repeated subscripts is used. 

It is assumed that the behaviour of the body material under complex laoding can be 
described by differential linear or differential non-linear relationships of the form 

The function Aljpp is homogeneous of zeroth degree in et,,' or generally independent of 

aEll in the case of differential linear relationships. We take xl,xtr . . .,x, to be values of 
certain functionals of the strain history. Relations for different versions of flow theory 
and for theories based on the slip concept /lo/ can be represented in the form (1.1). 
Relationships (1.1) are a special version of the theory of elasto-plastic processes /ll/. 
When Atjpq = Atipcr (2) (1.1) correspond to linear elasticity theory for an inhomogeneous aniso- 
tropic body. Note that relationships of the form (1.1) can be used for both active loading 
and unloading processes. 
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We introduce the functicn 

and we impose constraints on .A,,, in such a way that the following conditicns are satisfied: 
a) W (. . ., etq.‘) is a convex, continuously differentiable function of s%,,'; 1 

bl There exist a,>O,a,>O 
inequalities are satisfied: 

independent of the strain history such that the following 

Qsij'Eij*Q W (s a m 1 8&) < CLtEij’Elj’ (1.31 

The surface r consists of three parts I‘,, ra, rU. We will denote the normal to the sur- 
face I? at the point x, external with respect to n, by v(z), 

A rigid stamp acts on the surface I',, where the actual contact areas are not given in 
advance. It is assumed that there is no friction between the body surface r,and the stamp 
surface. If the law of motion is given for the stamp as a rigid body, then the function&(z,t), 
whose values equal the distance between the point x~ I', and the surface of the stamp at the 
time t, can be constructed uniquely. the distance is measured along the direction of the 
normal Y(Z). The function @(z,t) can also take negative values, which corresponds to inser- 
tion of the stamp. Since the body is in the unstrained state for t=O it must be required 
that 0 (2, 0) 2 0, VJ E r,. 

We let 4, k, 04, as denote the normal and tangential components of the displacement and 
stress vectors at points of the surface r,. Then interaction between the body and the stamp 
at points of the possible contact surface is described by the following conditions: 

The condition u, (z, t)<@(Z, t) ex resses p the requzzement of mutual impenetrability of the 
body and the stamp, and the condition uV(z,t)< 0 denotes that there are no tensile stresses 
at points of the contact surface. We emphasize that the actual contact areas are not given in 
the formulation of conditions (1.4). 

The forces are given on the surface r0 

ai1 (5, 09 (3) = St (z, 0, St (5, 0) = 0, VX E r@, vt E lo, 27 (1.5) 
and the displacements on the surface r,,#@ 

ui (2, t) = ui (s, t1, Uf (5, 0) = 0, vz E ru, vr E [O, T] (1.6) 
The body n is also subjected to the body forces 

Qi (5, t), Qr (2. 0) = 0, If2 E Q, Y1 E 10, Tll 

The initial problem is to determine the displacements uf (stt)~ the strains Eij (z, tj, the 
stresses Ui/ (t, t), satisfying the equilibrium equations, the Cauchy relationships,relationships 
(l.l), the boundary conditions (1.5) and (1.61, the conditions on the contact surface (1.4) I 
and the initial conditions ~1 (x.0) = stj (~~0) = 01f (G 0) = 0, Vx E CA 

2. Formulation in the form of quasivariational inequality. AS before, we 
introduce certain functional spaces to determine the class of allowable functions. We under- 
stant L*(P)ta be the Hilbert space of functions, square-summable in the manifold P; the scalar 
product in Lp (P)is defined as follows: 

We introduce the S.L. Sobolev space H = ]wzl (Q)]' of the vector functions w (5) = (w,(z), 

w2 (z), w3 (2)) such that Wt EL2 (n), I i,iE La(Q). we allot to H the structure of a Hilbert space by 

indicating the scalar product 
(w(",uI(*')H =(& wPQty*, + (w& wlf:)Lynt 

Finaliy, we define the Hilbert space LZ (0. 2': ~1 of the vector function ~(1, t) with the 
scalar product 

T 

(d’), @))L~to.T: H) - s (w(l), ZdQ dt 

0 

As is usual in Hilbert spaces, we understand the norm to be ]I w]] = I/(Lu,. 
Henceforth we assume the displacement velocities v'(~,t) to be elements of the space 

L’(0, T; H). We introduce the set v of admissible displacement velocities in which we include 
the velocities ~'(2, t) satisfying conditions (1.6) and the kinematic conditions from (1.4) 
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v = {v- EL* (0, T; H) 1 s Vi’ (I, 7) dr = uj (5, t), ys E ru, 
0 

5 vv- (G T) dr Q @ (5, t), v 5 E rc, v t E [O, 
0 

T]) 

We will obtain an analog of the principle of possible displacement velocities as it 
applies to contact problems with uncertain contact areas. We denote the actual displacement 
velocities in terms of u*', and those kinematically possible, in terms of vi'. 

We will define the possible strain rate tensor by the Cauchy relations 

61,' = 'i, (ViJ + Vi.1') 

We understand sif', oil' to be components of the real strain rate tensors and the real stress 
rate tensors. 

Applying Gauss's theorem to the identity 

-5 (o;j.j + Qi’)(ui - ui’) d&-i = 0, v v’ E V 
P 

taking conditions (1.4)-(1.6) into account, we obtain the integral equation 

s 
uij' (cij' - sij') d!2 - 1 Q; (vi’ - ui’) dS-2 - 

’ SS:(vi.-_ui.)dl.--jo;(v;--r;)dT=~, yv’~V, vtE[O,Tl 

ro 

We introduce the subset K (u)of vector-functions v' (r, t) satisfying the additional 

(2.1) 

condition 

for all (2. t) E TC X IO. 77 

It can be shown that 

L;(z,~)E ~v&,T) dt=@,(z, t) 
0 

(2.2) 

into the set V, such that 

u+, t&,*(5( t) dT=Q)(.q t) 
Cl 

the equation 

v,' (5, t) = UT’ (5, t), Vu’ E K (u) (2.3) 

holds at the actual contact points during the time of contact , with the exception of the 
initial contact and separation times. 

At the contact-free points of rc, s,,'=O and therefore 

0,' (VV' - he) = 0, VU’ E K (u), almost everywhere in I?, x IO, Tl (2.4) 

We now examine (2.1) by considering v' as an element of the set K(U). 
the interval iO,Tl, 

Integrating in 
and taking account of (2.4), we obtain 

f{a~~~(6~i.-e~~)da-~Q~(v~-u~)da- jcS,.(v;-u;)dIjdt=O. vv’EK(u) (2.5) 

. . 
We express Uij In terms of Et*’ according to (1.1) and we convert (2.5) to the form 

J, (U',V' -U') S [a(...,u’,v’- u’)- T 

F (v’ -u.)]dt:O, vv’~K(u) 

a (. . . , U’, v’) =S Aijpp(. . . ,e&eij’&qdQ 

F (V') = S Qi’vi’ KY* + S S;vi’ dr 

(2.6) 

P ra 

Relations (2.6) are analogous to a variational equation in the displacement velocities 
for classical boundary value problems and are distinguished by the fact that the allowable 
velocities v' belong to the setK(u)that depends on the desired solution. 

We convert (2.6) to an equivalent form in such a way that the allowable velocities are 
elements of the set V. For u' E V \ K (u) the expression J,(u',v' -u') can take both posi- 
tive and negative values. If components that ‘take sufficiently large values to disturb the 
set K(u) are appended to J,(u', u'- u') then..for all V’EV the expression obtained will be 
non-negative. In particular, for all v'E V in e, (v)> 0 can be found such that 
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T 

J1 (u’, u’ - u*)+S S [a,(u)(v-uu)/eldrdt~O, 
0 G 

y E < eo 6:) (2.7) 

We introduce the function 11: (u~(u),v - U) as foll.ows 

It‘ (sv 6% 0 - a) 7 ;' 0, (u) (V - 26)/s, Vv' E Y 

Obviously 9 (UV (U), U - U) = fm if UY (u) C 0, v< @, and 9 (s,,(u), v - u) = 0 otherwise. 
Passing formally to the limit as ~‘0, we obtain 

T 
Jt(a,(u), u',I.'- U')E Jl(U',C'_ u') f s F,(O,(U),1: - u)dt > 0, 'd II'= v (2.8) 

F,= s ~(n,(tl)r~-a.)dT 
r, 

Lf * (UV (u), L' - L() = -+-m in a set of non-zero measure in I?* x 10, ?"I, then the inequality 
(2.8) is considered satisfied by definition. 

Therefore, if u'=V is a solution of the problem in the initial (differential) formula- 
tion, then u'EZ V also satisfies the quasivariational inequality (2.8). The concept of the 
"quasivariational inequality" is utilized in connection with the fact that, unlike variational 
inequalities, the formulation of inequality (2.8) depends on the desired solution /3/. 

Let us prove that the solution of the quasivariational inequality 12.8) is a generalized 
solution of the problem in the formulation of Sect.1. We will confine ourselves to conditions 
(1.41; the satisfaction of the remaining equations and conditions can be given a foundation 
exactly as in the case of contact problems for a non-linearly elastic body by formally replac- 
ing the displacements by velocities /4/. Let Y-(X, t)EV be a solution of (2.8). We in- 
traduce the notation 

rc(l) M = (z E rc 1 uv (2, t) = (0 (2, t)ft rc’2’ (t) = rc \ re(l) (t) 
and we will show that 

oy (x, t) < 0, vr E rG@) (t), UV (2, t) = 0, vz E r,te (9. 

In fact, if s,(z,t)>O for x forming a set of non-zero measure in rCIV(t), then for all 
V’ (2, 1) E V such that U, (z, t) < (0 (z, t), Vz E I'p (t), we have F, (uv (u), u -u) = --DO. If uv (2, t) f 

0, t E I’Ja (t), then by selecting Vi = ~4 f Cpi on re(zJ(t), we also arrive at a contradiction to 
the quasivariational inequality (2.8). 

We finally formulate the results obtained in Sect.2. 

Theorem 1. The solution of the initial problem formulated in Sect.1 satisfies the quasi- 
variational inequality (2.8); conversely, solution (2.8) is a generalized solution of the 
problem in an initial (differential) formulation. 

3. A method of solving the quasivariational inequality (2.8) *We partition 
the segment [O, TI into n parts by using n j- 1 nodes to I 0, tl, . . -, 4, tfa,. . . . t,, = T; ti < ti+~. 
Since the velocities u'(z,t) can as elements of the space Lz (0, T;H), have discontinuities in 
time, we shall distinguish the times ti - 0 preceding t, and the times t, j-0 following tl. 
Within each interval. (&tl+l) we approximate I?'(& t) by linear functions un'(zr t). The sub- 
script R correspondstothepartitionof the interval [O,T) into n parts. From the require- 
ments imposed on V'E V it follows that the nodal velocities u,,'(x, tl-0) and u,,'(s, tl + 0) 
should satisfy the following conditions within the framewrok of the piecewise linear approx- 
imation being used: 

*vn (2, 6 - 0) =rvn (2, 4-l -k 0) + Ivy* (2, 4-i + 0) + (3.1) 
v,,,' (2, ti 4 @)I A&'2 Q a, (2, Lt - 0). Vz IS I',, t = 
1, 2, . . ., n, At, = t, - tl_1 

h,’ (2, tt -I- 0) < @ (5, t, + 0) for all z E rc, such that 

UVn (z, tt - 0) = Q, (2, t, - O)* 1 = 0, 1, . . ., n - i 
Ui’ (5, t, - 0) = U,’ (5, t, - O), I = I, 2, . . ., R 
q’ (t, t, + 0) = u; (5, t,-f O), 1 = 0, 1, . * .I n - 1 

hle let V,, denote the set of piecewise-linear functions v,,'EL*(O, T; H) that satisfy 
(3.1). Let h*EV, be the desired approximate solution, and i&the corresponding normal 
stress on r,. Let ut, fr, t) = 6,(z, ;_!~f O$ Vx E ITCx Vt E (1,-z f 0, 4 - 0) and Te introduce 
the subset K,,(u,,)C V of functions n n that satisfy the additional conditions 

UY,' (2, Q-1 -J- 0) = UY (5, t[..l -+ O), V, (z, t, - 0) = cf, (z, tr - 0) (3.2) 

for all ZE: rc such that a,, (I, tl_t + O)< 0, l = 1, 2,. . .v n. 
we replace the integral in (2.8) by a sum using the trapezoidal formula. For v,‘E I&(&J 

the values of hp at the nodes t!-&O equal zero and there are no corresponding components in 
the integral sum. Let the approximate solution u,,'(z, t)E Vti already have been obtained for 

t < tt. \?e will show how one can determine the nodal values u,' (x, t) for t = t* = tt 4 0 and 
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for 1 E t** = tl+r - 0. 
(I) (1) 

Let xl*, . . ., X, denote values of the strain history functionals cor- 

responding to the time II - 0. According to conditions (3.1) and (3.2), we introduce the set 
K,* of allowable velocities at the time t * taking into account that for t < t, the approx- 
imate solution n,,' has already been obtained 

K,* = {u,' (2, t*) E H 1 vi,' (2, t*) == Vi' (2, t*)t VS E I'", VW' (2, t*) <W (5, t*) 

for all SE r, such that 

u, (2, t*) = @ (t, t*), u,' (x, t*) = @ (5, t*) 

for all z E rc such that u,,,(z,t*)< 0). 
We will require that the components in the integral sum corresponding to the time t* 

should be non-negative, and we will obtain the following variational inequality to determine 

11, ** = u,' (2, t") : 

a (x, x:‘,), iI) ‘* ** 
. . ..%mUnrVn- u:) > F (t*, v; - un’), v v’* E K,+ (3.3) 

Considering u.,,'(x,t*) known, we construct the set K,,** of allowable velocities at the 
time t** 

KY = {Um’ (Xv t**) E q 1 Vy (2, P*) = Ui’ (Xv t**), V X E rv, 

bn (2, f+*) = %I (x9 t*) + ru;, (51 t’) + u, (x, t”)] Ah+*/2 < 

CD (I, t**), v x E r,, cm (3~ t**) = @ (5, t**) for all 2 E r,, 
such that e~~(s~t*)>Ol 

The values u,,.** = n,'(z,t**) are defined as the solution of the variational inequality 

(3.4) 

Conditions for solutions of the problems of the type (3.3) and (3.4) to exist are in- 
vestigated fully in /3, 4, 12/. Using these conditions, we obtain that under the assumptions 
made about the function W(..., et,‘) and under the following requirements on the functions 

Vi', CD;, Qi’, Si 
u; E m (r,), CD’ E m (r,), Q; E La (n), s; E up,) 

a unique solution of the problems (3.3) and (3.4) exists for almost all fixed t&&T]. 
A definition of the space all(...) is given in /3/. Simple and efficient algorithms 

/13/ are proposed for the numerical solution of problem of the type (3.3), (3.4). 

4. The existence of a solution of the quasivariational inequality. The 
investigation of the convergence of the algorithm described in Sect.3 and the simultaneous 
existence of a solution of the quasivariational inequality (2.8) follows the idea of /14/ and 
consists of proving two assertions: 

a) A subsequence, weakly convergent as n+ 00, can be extracted from the sequence of 
approximate solutions {u~'(z,~)} ; 

b) The limit of this subsequence satisfies the quasivariational inequality. 
Let us prove the first assertion. Let k,'* = n,,'(x,t*) be the solution of the variational 

inequality (3.3) and therefore 

a(...,uz,v’-u$-F(t*,v’-uz)>O, VV’EK,* 

We introduce the notation w,,,,' = a~,,'* - v and we convert (4.1) to the form 

a(. . .,w,,' + v',w,,')- F (t',w,')< 0, VU'E K,,* 

It follows from condition (1.3) that for any a>0 

(4.1) 

(4.2) 

a ( 
- 

. . . , -&v’+ J + w,‘, - & v-+-r/~w+o 
or 

& a(. . . ,v',v') + -$ a(.. . , ~c,',zc,') + a (. . . v’, We’)> 0 

Subtracting the last inequality from (4.2), we find that 

Using the Korn inequality /3/, we obtain the estimate 

al* I/ IL,’ 11~’ Q 20 a i ( . . . , v’, v’) + F (t*, w,‘) (4.3) 
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We apply an analogous method in combination with the Sobolev /15/ imbedding theorems to 
estimate F (t*, w,') : 

We note that because of the demands imposed on the functions Qi'and Si'in Sect.3, the corres- 
ponding norms in (4.4) are finite. 

Combining (4.3) and (4.4), we obtain the final estimate 

11 q,’ l/z-~ < iha (. . . , v’t ~‘1 f Bz’ll Q’ II~L~I~ + 83 II S’ Ikro~,~ 
The constants fir9 pa, fis can be made positive because of the selection of arbitrary a. 

It hence follows that 11 ru,'lla < Cl, where c~is independent of the partition of the segment 

[O. 2'1. Since &'* = W,' + V', it can then be concluded that jl u'* I/H'< c,. It can similarly 

be shown that ]I u.,,'** ]]H~< cz. Taking account of the method of determining ~1,' within the 

segment (P, t**), we find that I] ~,,']]a~< C, C = max(C,, C,), VIE It*, t**l , and therefore 

II &I’ IILV. T; a) = [ IIu,‘Ilr?~~<CT 
0 

Hence, the approximate solution 11,' is bounded in the norm L2(0, T; H) and consequently 
/15/ a subsequence that we denote by (Y;) and is weakly convergent to a certain element 

U' E L2 (0, T; H) can be extracted from the sequence &7X*,') * 
We will show that u'is a solution of the inequality (2.8). Using the partition of the 

interval [Cl, T] introduced in Sect.3, we approximate U,', C#J’ by piecewise linear functions 
lJin.7 CD,,' and Qi.7 Si' are piecewise-constant functions in time. All the approximations 
introduced converge strongly in the norm of the corresponding spaces /14/. If 11,' -. v’, v,’ e 
V, as n-+w, then on the basis of the theorem on traces /3/, we conclude that v'E v. Since 
the set v is convex and closed, and therefore, weakly closed, it can also be shown that u'C v. 

Let us substitute these approximations into the left side of (2.8); integrating with 
respect to the time, we obtain 

In 
7 r, 

{a(...,u;, v~-u3i_~(...,~;1**,v~-u;l**)- (4.5) 
1=-l 

F(t*,v;: - uZ)--F(t**, I$=+- UT)+ Fe(&v,* -u,*) f 

F,(o:,, v?- u:) + +-[&(&,u,,* - u:: - v,* -v:) At, + 

The first four components are the sum of the left sides of the variational inequalities 
(3.3) and (3.4); this sum is non-negative in the case v,,'E K,,(u,) . If v,' E V, \ K, (u,), 
(4.5) takes the value -i-m. The components in square brackets tend to zero as n-FCQ. 

We note that under the assumptions made about w(...,e,,') , the functional a(.. .,v’,v’) 
is weakly semi-continuous from below /16/. Taking account also of the strong convergence of 
the approximationsintroduced, and passing to the limit as n-Q, we obtain the required 
quasivariational inequality (2.8). 

Therefore, the following has been proved: 

Theorem 2. Iftheconstitutive relationships of the form (1.1) are such that the function 

w (. . .t &Y constructed in conformity with (1.21, satisfies conditions a) and b) of Sect.1, 
while the selection of the functions Ui,@',Qi', Si is subject to the requirements 

u; E L2 (0, T;-IT’* (r,)), O- E L2 (0, T: ET” U-8 
Qi' E L2 (0, T; L2 (a)), Si’ E L2 (0, T; L2 (l-o)) 

then the solution of the quasivariational inequality (2.8), or equivalently, the generalized 
solution of the initial problem U' E Lz(O, T;H) exists. 

On the basis of the results obtained, an algorithm has been developed for the numerical 
solution of contact problems under complex loading in plane strain conditions. The variational 

inequalities (3.3) and (3.4) are replaced by equivalent problems of minimization /3, 4, 12/, 
whose discretization is realized by using a finite-element method. To solve the non-linear 

programming problems that occur, a generalization is used of the method of relaxation of 
vertices to the case of problems with constraints /17/. The set of programs developed in 

FORTRAN enables any theory of plasticity with governing relationships of the form (1.1) to be 

used. 
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ON THE STEADY MOTION OF A CRACK WITH SLIP AND SEPARATION SECTIONS ALONG 
THE INTERFACE OF TWO ELASTIC MATERIALS* 

I.V. SIMONOV 

The pre-Rayleigh motion of a crack (slit) with a finite slip section 
adjoining the edge of the crack and a semi-infinite separation section 
along the line connecting two elastic materials is studied under the 
action of a moving load. The problem is first reduced to a Hilbert bound- 
ary value problem with three different singularities for a system of two 
analytic functions of a complex variable. Then, by using conformal mapping 
techniques, analytic continuation, and elimination of singularities it is 
reduced to a problem with two singularities that lends itself to splitting, 
and consequently, of solution in Cauchy-type integrals. The length of 
the slip section 2 is determined uniquely from additional physical 
conditions (no force of attraction on the slip section, and non-inter- 
section of the slit edges in the separation zone) formulated in the form 
of inequalities. For a concentrated load at a distance L from the edge 
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